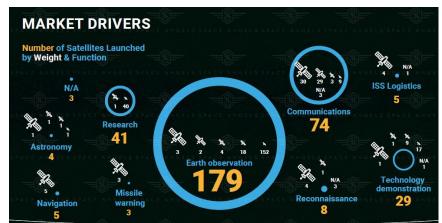


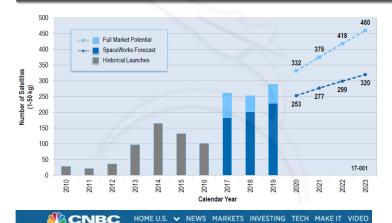
Content



- ☐ Introduction Why Small Launcher?
- NASA Flight Opportunities Program
- Small Launcher Technologies Public Private Partnership
- □ Area of Opportunities
 - Announcement of Collaborative Opportunities (ACO)
 - ☐ Tipping Point
 - ☐ Small Business Innovative Research (SBIR)
- ☐ Technology Development Trends A personal observation

Need for Dedicated Small Launcher

- "Small Sat" is not just for science anymore!
- It has become a viable business for investors
 - A global phenomenon
- Demands for dedicated Small Sat Launcher
 - Go <u>WHERE</u> you want to go, <u>WHEN</u> you want to go, at a <u>PRICE</u> you can afford,
 - WHEN to start booking revenues!
- Need to maintain U.S. competitiveness in commercial space access



Space Angels, "Space Investment Quarterly", Q3, 2017

SpaceWorks 2017 Nano/Microsatellite Forecast

2017 Nano/Microsatellite Launch History and Forecast (1 - 50 kg)

Projections based on announced and future plans of developers and programs indicate nearly 2,400 nano/microsatellites will require a launch from 2017 through 2023

Space companies are receiving billions from venture backers, report says

- Investment firm Space Angels said that over \$2 billion in private investment has flowed into space industry companies this year.
- The number of venture firms investing in space reached 59 this year, up from five in 2011.

Michael Sheetz | @thesheetztweetz Published 4:23 PM ET Wed, 1 Nov 2017

CNBC

Sample of Small Launchers in Development

-		11000			
Vehicle	LauncherOne	Firefly Alpha	Electron	Vector-R	Spyder
Launch	Air	Land	Land	Land	Land
Expected	2018	2020	2018	2018	-
P/L LEO	500kg @ 230km*	360kg @ 400km#	224kg @ 300km^	70kg @ 200 km	8kg @ 370 km
P/L SSO	300kg @ 500km	200kg @ 500km	150kg @ 500km	30kg @ 450 km	-
Cost/kg	\$33K/kg	\$50K/kg	\$40K/kg	\$33K/kg	\$125K/kg
Price	<\$10M	\$10M	\$6M	\$1M	\$1M

SSO : Sun-Synchronous Orbit * circular Odeg incl.

[#] circular +45deg incl.

[^] apogee with 180km perigee +45deg incl.

U.S. Small Launch Providers

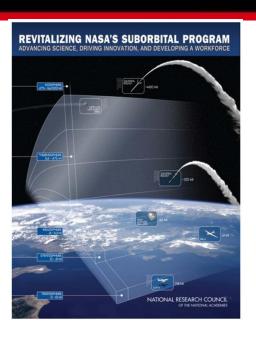
	04311	SPACE SYSTEMS	V	Vector Space		Relativity		
Vehicle	LauncherOne	FireflyAlpha	Electron	Vector-R	Spyder			
Company	Virgin Orbit	Firefly Aeros pace	Rocket Lab USA	Vector Space Systems	UP Aerospace	Relativity	Ventions	Generation Orbit – Launch Services
Corporate Structure	Subsidiary of Virgin Group	Private	Private	Private	Private	Private	Private	Private
Founded	2017	2017 (restart)	2006	2016	2004	2015	2004	2011
HQ Location	Los Angeles, CA	Cedar Park, TX	Long Beach, CA	Tucson, AZ	Denver, CO	Los Angeles, CA	SF, CA	Atlanta, GA
Private Funding*								
Latest Round	-	\$19M Venture (June 2016)	\$75M Series D (March 2017)	\$21M Series A (June 2017)	Ş	tbd	?	?
Total	-	\$21.76M	>\$75M	\$27.75M	?	>\$10M^	?	?
U.S. Government – NASA only**								
VCLS	\$4.7M	-	\$6.9M	-	-	-	-	-
ACO2017	\$1.2M	-	-	-	\$1.2M	\$1.2M	-	-
TP2016	-	-	-	\$1.9M#	\$2M	-	\$2M	-
ACO2015	\$1M	-	-	\$0.6M	\$1M	-	-	\$3.1M
SBIR/STTR***	-	-	-	\$3.7M	-	-	\$3.1M	\$1M
	\$6.9M	-	\$6.9M	\$6.2M	\$4.2M	\$1.2M	\$5.1M	\$4.1M

^{*} source: https://www.crunchbase.com

Green = ACO/TP partners

[^] source: https://www.geekwire.com/2017/relativity-space-raises-curtain-bit-stealthy-rocket-venture/

^{**} source: https://www.nasa.gov/sites/default/files/atoms/files/active_domestic_private_sector_saas_as_of_12-31-2016.pdf


^{***} source: NASA/DoD awards 2011-2017 from https://www.sbir.gov/sbirsearch/detail/171983?page=1

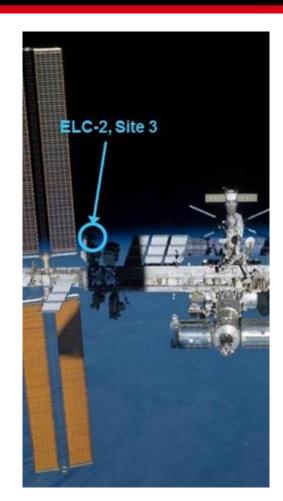
^{#:} sub contractor to HRL

STMD/Flight Opportunities Program

- Established FY2011 as NASA response to NRC report 'Revitalizing NASA's Suborbital Program'
- One of 9 programs in Space Technology Mission Directorate (NASA)
- Spurred on by emergence of Commercial Suborbital
 - Suborbital Space Tourism (Ansari X-Prize Oct 2004)
 - NASA's Lunar Lander Challenge (2006-2009)
 - Program combined NASA's previous engagement with commercial suborbital (CRuSR) and commercial parabolic (FAST)
- Since FY2016 Program expanded to include
 - Commercial small dedicated launch vehicle technology development and commercial 'Materials ISS Experiment - Flight Facility' (MISSE-FF)
- Overall Program Management at AFRC
 - Technical projects executed throughout NASA
 Centers and Industry
 - 10-15M\$ annual budget

Flight Opportunities Suborbital Flights Campaigns

Commercial Suborbital – Small Launch - LEO



CommercialSuborbital Flight
Platforms

Commercial Small Orbital Launch Vehicles

Commercial Materials ISS Experiment Flight Facility

nasa-flightopportunities@nasa.gov

Small Launcher Technology – Public Private Partnership

Objective: Support the development of commercial small orbital launch capabilities.

Mechanism: Competitive selection – Proposal evaluation process

- Announcement of Collaborative Opportunity (ACO) Every Other Year
 - ACO enables NASA Centers to provide technical expertise and test facilities, as well as hardware and software, to commercial companies for the purpose of accelerating the development of promising technologies.
 - ACO 2015 executed in June 2016.
 - 5 companies selected at total value of \$7M
 - ACO 2017 awarded in September 2017, awaiting execution.
 - 3 companies selected at total value of \$3.5M
- Tipping Point Every Year
 - Firm-fixed-price contracts awarded to both flight service providers and vendors/suppliers/support service providers that can significantly improve the prospects of the emerging small launch vehicle market.
 - 2016 6 companies selected at total value \$12M. (June 2017)
 - 2018 solicitation open (see next page)

Tipping Point Solicitation

What is it?

- Firm Fixed Price FAR Contract
- Period of Performance: up to 24 months
- Contract Award: up to \$2M/ea.
- Company must cost share at least 25%
- Goal/Intent: To stimulate the commercial space industry while leveraging those same commercial capabilities through public-private partnerships to deliver technologies and capabilities needed for future NASA, other government agency, and commercial missions.

Tipping Point 2018 Solicitation Schedule

Key Dates:

Appendix Release Date: November 30, 2017

Mandatory Preliminary Proposal Due: January 30, 2018

Invitation for Full Proposals/Feedback Provided: by March 30, 2018 (target)

Full Proposals Due: May 30, 2018 (target)

Selection Announcement: September 2018 (target)

Award Date: February 2019 (target)

NASA SBIR Program

Subtopic Z9.01: Small Launch Vehicle Technologies and Demonstrations

- Key Dates
 - 2018 Phase I SBIR
 - Solicitation Release: 1/11 3/14/2018
 - Phase I award: 5/04/2018
 - 2017 Phase II SBIR
 - Solicitation Release: 10/27 12/30/2017
 - Phase II award: 3/06/2018

https://sbir.nasa.gov/

Phase I Contract	SBIR	STTR	
Maximum Contract Value	\$125,000	\$125,000	
Period of Performance	6 months	12months	
Phase II Contract	SBIR	STTR	
Maximum Contract Value	\$750,000	\$750,000	
Maximum Period of Performance	24 months	24 months	

Small Launch Capabilities Technology Development Partners

ACO15

6 awards

Tipping Point 16

6 awards

SBIR17

5 awards

STTR17

4 awards

ACO17

3 awards

Masten

ACO 2015 Example: Vector Space

ACO 2015 Example: Generation Orbit

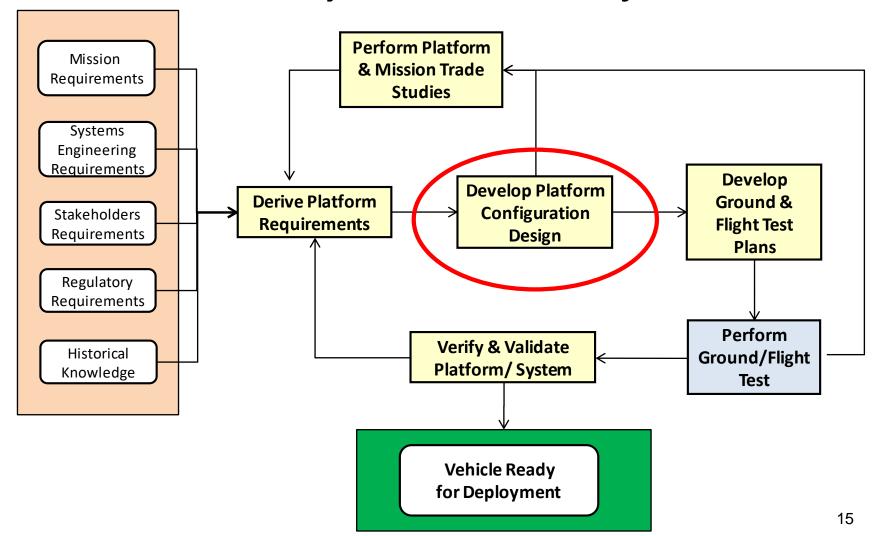
Flight Test of GoLauncher1 Inert Test Article (ITA)

Technology Maturation and Flight Validation for Air Launched Liquid Rockets (ACO-15) *Generation Orbit Launch Services of Atlanta, GA*

- This project focuses on a single stage liquid rocket, GoLauncher 1, launched from a NASA owned and piloted Gulfstream III, capable of delivering payloads up to 1,000 pounds on high-altitude suborbital and suppressed hypersonic trajectories.
- Generation Orbit Launch Services is partnering with the NASA Armstrong Flight Research Center (AFRC)
- December 11 12/2017: Completed flight test simulated abort release of ITA.

Take off: https://www.youtube.com/watch?v=dzbdptNT7qc Landing: https://www.youtube.com/watch?v=ayAr7CUBQzg

Technology Development Trends


- A personal observation

- Reduce Total Cost of a Launch System
 - Companies understand cost drivers and find ways to eliminate or minimize
- Reduce Development/ Manufacturing/ Acquisition Cost
 - Eliminate turbopump-fed liquid rocket engines (good performance/high cost)
 - Opportunity: Develop low cost turbopump using additive manufacturing techniques
 - Find/ develop low-cost solid propellant manufacturers
 - Develop alternatives to high cost flight computer guidance/navigation/control and flight termination system
 - Opportunity: Eliminate traditional flight termination system. Develop alternatives.
 - Reduce traditional aerospace component suppliers Make vs. Buy
- Reduce Infrastructure Cost
 - Eliminate a permanent launch pad. Use of mobile launch pad concept.
- Incorporation of Reusable/ Partially Reusable Systems
- It is a race!!
 - Time to market is perhaps the most important metric

Final Thought

It's a Launch System - more than just a Rocket!

Questions?